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Abstract

This paper describes a general form of nonlinear
dynamic inversion control for use in a generic nonlinear
simulation to evaluate candidate augmented aircraft
dynamics.  The implementation is specifically tailored
to the task of quickly assessing an aircraft's control
power requirements and defining the achievable
dynamic set.  The achievable set is evaluated while
undergoing complex mission maneuvers, and perfect
tracking will be accomplished when the desired
dynamics are achievable.  Variables are extracted
directly from the simulation model each iteration, so
robustness is not an issue.  Included in this paper is a
description of the implementation of the forces and
moments from simulation variables, the calculation of
control effectiveness coefficients, methods for
implementing different types of aerodynamic and thrust
vectoring controls, adjustments for control effector
failures, and the allocation approach used.  A few
examples illustrate the perfect tracking results obtained.

Introduction  

A key first step in any aircraft control law design is
to determine a set of achievable dynamics that can be
realized given the limitations of the vehicle’s effectors
to produce the required forces and moments.  This is
prudent since the results of such an analysis can guide
the design and potentially avoid costly redesign further
along the design process. In general, the set of aircraft
dynamics known to promote good handling is
expressed in terms of linear transfer functions. Ideally,
the good handling set should intersect the achievable set
and the designer should strive to augment the vehicle
dynamics to be within this intersection.  The danger of
augmenting the vehicle dynamics to be outside this
intersection is rate-limited actuators and potential PIO
tendencies 1,2.  Sometimes there is no intersection:
limitations of the vehicle prevent augmenting it to have
good handling qualities.  In that case, control power
requirements (e.g. surface sizing, control allocation)
need to be reexamined before proceeding to a detailed
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control law design.  Clearly, regardless of the result,
this sort of analysis is better done sooner than later.
The objective of this paper is to describe development
of a tool capable of determining the set of achievable
dynamics as early in the design process as possible.

The approach proposed utilizes a general form of
nonlinear dynamic inversion (NDI) control in a generic
nonlinear simulation tool to realize and test candidate
augmented aircraft dynamics.  Here, the
implementation is specifically tailored to the task of
quickly assessing an aircraft’s control power
requirements and defining the achievable set.  Smith 3,4

previously proposed this application of NDI.  The work
presented here is an extension of that work to address
various response types and incorporate handling quality
specifications.  Similar to Smith's approach, the
equations of motion are directly manipulated to provide
controls yielding desired responses for select control
variables.  Here, the control variables are not limited to
angular body rates but can directly include
contributions from angle of attack and sideslip angle to
modify control power requirements. As done in other
works 3,5, the ultimate objective here is a rapid
prototyping tool capable of establishing control design
guidelines without the costly investment of a detailed
conventional control design.  A high performance
airplane model with multiple innovative control
effectors is used to demonstrate this tool.

Several noteworthy features and uses of the
proposed Force/Moment NDI approach are listed
below.
1. This nonlinear simulation analysis tool gives the

best possible tracking for a desired set of dynamics,
and can be used to determine the set of achievable
dynamics while maneuvering over the entire flight
envelop either in batch or real-time piloted
simulation.

2. The control law does not require adjustment, with
the exception of selecting weights if a control
allocation approach is used.

3. Robustness is not an issue since variables, in
particular force and moment increments, are
extracted directly from the simulation model and
functional fits are not required.

4. Candidate low-order augmented aircraft responses,
as defined in the Mil Standard 6, can easily be used
and varied for evaluation.
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5. Other uses include evaluation of control allocation
techniques, development of guidelines for
reconfigurable control, and evaluation of new
control effector concepts that are presently being
explored 7,8.

6. The tool’s format allows quick and easy
comparison of various aerodynamic databases.

For this development, actuator dynamics are not
included, but rate and position limits are considered.

The main point of each section, corresponding to
the order presented in this paper is 1)an overview of
nonlinear dynamic inversion control as it pertains to
this particular application, 2)manipulation of the
aircraft’s equations of motion to provide the required
inner-loop control, 3)extraction of the required force
and moment data, 4)discussion of the inverse control
map for generating pseudo surface commands, 5)the
pseudo inverse allocation approach used,
6)implementation of the aerodynamic coefficients to
account for control effector failures, 7)calculation of the
control power required, 8)non-minimum phase analysis,
and 9)presentation of illustrative examples.

Nonlinear Dynamic Inversion Control

In this section, an overview of the control is
offered followed by a more detailed description of the
control’s respective parts.  The general form of the
control law, shown in figure 1, is not too different from
previously applied NDI control approaches 9,10.  Due to
the information available from the simulation, however,
the implementation here will be greatly simplified over
reference 9.

CV
DEFINITION

aero forces & moments
engine forces &  moments

output variables
physical properties

etc.

FORCE
&

MOMENT
DI

DESIRED
DYNAMICS

surface
commands

States

cy desy�

y

Figure 1. Overview of Control Law.

The control consists of two parts: 1) control
variable (CV) processing and 2) dynamic inversion
(DI).  Control variable processing consists of the CV
definition and the CV rate command generation.  The
overall control objective is to achieve some desired
response of the CV vector y  to command yc .  Various
states are typically blended to define the elements of y .
Generally, there are three elements corresponding to

motion about each of the three axes: longitudinal,
lateral, and directional. The command yc , of the same
dimension as y , can be thought of as the result of
shaping and filtering (not shown) of the pilot’s stick
and pedal inputs. These control variables and their
commands are fed to a block that processes the signals
to produce the desired responses (actually rates of the
desired responses).  The desired response signals are, in
turn, fed to the DI block that issues the required surface
commands to produce the desired responses from the
actual vehicle.  Essentially, the DI block makes the
transfer function matrix from desy�  to y  an integrator,

i.e., diagonal matrix with first-order integrators.  As a
result, the actual control variables equal the desired
ones subject to the vehicle’s control power constraints.

This partitioning of control makes the strategy for
determining the achievable set straightforward. The
control variable processing portion of the control law,
CV definition and desired dynamics, produces desired
responses for the candidate low-order command models
that are decoupled along axes and compliant with the
military specification. The dynamic inversion portion of
the control law generates surface commands to produce
the desired response from the vehicle subject to its
control power limitations.  Note the set of achievable
dynamics consists of the low-order command models
that the vehicle is capable of following.

Control Variable Processing

Assume there are three control variables
corresponding to some desired motion about the
longitudinal, lateral, and directional axes

[ ]Tdirlatlon yyyy ,,= . (1)

Let x  denote the state of the aircraft in the generic
simulation whose motion is governed by

),( δxFx =� . (2)
For this paper, assume that dim(δ ) ≥ dim(y)  and the
control variable is related to the state as

y = h(x) . (3)

Here, [ ]Tbbb rpvqwux φθ=  where

),,( wvu  and ),,( bbb rqp  are respectively the

components of the aircraft’s translational and angular
velocity expressed in body axes.  The standard Euler
angles ),( φθ  are used to orient the gravitational force

to the body axes. The control δ  will be described later.
To facilitate the upcoming discussion, an auxiliary

set of states xaux that is linearly related to the control
variables is introduced as

auxHxy = (4)
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where H  is a constant matrix.  Assume )(xfx auxaux =
so that )()( xHfxh aux= .  The auxiliary set can include

such variables as angle of attack, sideslip angle and
stability axis components of angular velocity in
addition to any of the original states.

In figure 1, the control variables and yc  are fed
into a block labeled ‘desired dynamics’.  This block
defines the desired dynamic behavior the control
variables should follow.  Assuming the inner DI loop
has produced a decoupled integrator block relating desy�

to y , the three loops may be considered separately in
defining the ‘desired dynamics’ block.  Here, three
command models define the augmented vehicle
dynamics in the longitudinal, lateral, and directional
axes respectively as:
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Transfer functions selected for these command models
are typical transfer functions found in the military
specifications. 6 These low-order responses can be
achieved using an outer-loop control structure as
illustrated for the longitudinal axes in figure 2.  The
integrator resulting from dynamic inversion of the
simulated vehicle is shown in the figure with an
approximation sign.
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Figure 2. Details of Longitudinal Outer-loop Control.

It should be mentioned that as long as the control
effectors remain within their respective rate and
position limits and they generate forces and moments
that are linear with respect to their deflections, dynamic
inversion will produce the required integrator.
Moreover, the desired dynamics will be realized.  This
statement assumes the control variables chosen promote

internal stability which will be addressed in a later
section.  Here, robustness to model uncertainty is not an
issue since the dynamics are known exactly in the
simulation.  Robustness could be an issue, however,
when the control is no longer linearly related to its
generated moments and forces.  In that case, the inverse
control mapping to be proposed will lead to an
approximate integrator.

Dynamic Inversion

The purpose of the DI block in figure 1 is to
generate the proper control inputs such that the set of
desired dynamics is achieved.  Generally, the
simulation’s force and moment build up in the
equations of motion are such that increments due to
controls can be separated from those due to the baseline
aircraft moving through the air mass.  Specifically,
equation (2) can be expressed as

),()( 1 δxgxfx +=� . (8)

Dynamic inversion, however, assumes that the control’s
influence is linear or

δ)()( xgxfx +=� . (9)

To realize the control that achieves a desired control
variable response ydes for this system, take the
derivative of y using equation (3) as

δ)()(
)(

xghxfhx
x

xh
y xx +=

∂
∂= �� (10)

where xxhhx ∂∂ )(= .  When the number of control
variables and control effectors are equal, the dynamic
inversion control may be solved for directly as

( ) ( ))()( 1 xfhyxgh xdesxcmd −= −
�δ . (11)

In the usual case where the number of effectors is
greater then the number of control variables, some type
of control allocation method is required.  A weighted
pseudo inversion approach is discussed later in this
paper.

Dynamic inversion assumes that the inverse control
mapping 1))(( −xghx  exists.  If )(xghx  is nearly

singular, the set of effectors are either redundant or ill
suited to force the selected control variables to follow a
desired response. Dynamic inversion also assumes that
the control variables chosen will not produce unstable
internal dynamics (discussed later in paper).  Dynamic
inversion only guarantees the response of y  to yc , but
this assumes the dynamics unobserved in y  remain
stable.  It is clear that if these assumptions are satisfied
then the dynamic inversion control produces yydes �� = .

Figure 3 shows the dynamic inversion portion of
the control for the system of equation (9).  The function

)(xf  contains the accelerations due to the forces and

moments generated by the baseline vehicle as it moves
through the air mass.  It should be mentioned that the
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function )(xf  also contains the inertial and
gravitational components of acceleration.  If one were
to implement the NDI control 9, functional
approximations of the aerodynamic database would
have to be carried in the control along with a
reconstruction of the inertial and gravitational
components of acceleration.  In this application,
however, the aerodynamic forces and moments are
reconstructed from their respective non-dimensional
coefficients taken directly from the simulation.  That is
why in figure 1 forces and moments are being fed
directly to the ‘DI’ block. An actual implementation of
NDI control would have to operate only on sensor
measurements.

AIRCRAFT

-
fby�

+
1)]([ −xghx

)(xhxh

)(xf

desy� δcmd

y

x

δ)()( xgxfx +=�

Figure 3. NDI Inner-Loop (Linear Controls)

Let us consider the inverse nonlinear control
corresponding to the actual equation of motion found in
equation (8).  The inverse control must satisfy

),()( 1 cmdxxdes xghxfhy δ=−� (12)

to make yydes �� = .  An approximation, discussed in a

later section, is used in this paper.  Prior to considering
this feed-forward portion of the control, the
simulation’s equations of motion are manipulated to
provide the required feedback signal.

Force and Moment Approach to Dynamic Inversion

This section includes key equations for the force
and moment approach to nonlinear dynamic inversion
(NDI).  A standard x-y-z body axes coordinate frame is
used.   Presented below are the nonlinear force and
moment equations 11 for a flat-earth, rigid-body,
symmetrical airplane.

)(sin bb wqvrummgX +−=− �θ
)(cossin bb wpurvmmgY −+=+ �θφ
)(coscos bb vpuqwmmgZ +−=+ �θφ

bbyyzzbbxzbxzbxx qrIIqpIrIpIL )( −+−−= �� (13)

)()( 22
bbxzbbzzxxbyy rpIrpIIqIM −+−+= �

bbxzbbxxyybxzbzz rqIqpIIpIrIN +−+−= )(��

Here X, Y, and Z represent the total aerodynamic and
thrust forces (lb),  L, M, and N represent the total
aerodynamic and thrust moments (ft-lb); xxI , yyI , zzI ,
and I xz are the moments and product of inertia (slug-
ft2); m is the mass (slugs); u , v , and w  represent the
linear velocities (ft/s); u� , v� , and w�  are the respective
linear accelerations (ft/s2); bp , bq , and br  represent
the roll, pitch, and yaw rates (rad/s); and bp� , bq� , and

br�  are the respective angular accelerations (rad/s2).
As stated previously, the control forces and

moments must be separated from all other aerodynamic
and thrust forces and moments.  Using this separation
and solving for the modified acceleration terms yield

bbae wqvrg
m

XX
u −+−−= θδ sin�

bbae wpurg
m

YY
v +−+−= θφδ cossin�

bbae vpuqg
m

ZZ
w −++−= θφδ coscos�  (14)
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where the subscript ae refers to aerodynamic, engine,
inertial and gravitational accelerations only (no control
accelerations) and the subscript δ  represents control
terms.  In equations (14), the angular accelerations are
converted to units of deg/s2.  All of the aerodynamic
components are extracted from the simulation.  This
approach, as well as modeling of the thrust control
terms, will be described in a following section.

Define the state vector xae as
T

aebaebaeaebaeaeae rpvqwux ],,,,,,,[ ,,, φθ= . (15)

In order to construct f ( x) the Euler auxiliary equations

φφθ sincos bb rq −=�  (16a)

φθφθφ costansintan bbb rqp ++=�  (16b)

which contain no explicit reference to control forces
and moments, are added to the set in equations (14)
yielding

)(xfxae =� . (17)

The same f ( x) is defined in equations (8) and (9).
Assuming the control variable is defined as in equations
(3) and (4), the NDI feedback of figure 3 can be
expressed as

ae
aux

aexxfb x
x

x
Hxhxfhy ���

∂
∂=== )( (18)
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Figure 4. Combined NDI configuration.

A typical set of auxiliary states that could be used to
form the control variables is

T
ssbaux rpqx ],,,,[ βα= (19)

where α  and β  represent the angles of attack and
sideslip respectively, and sp  and sr  represent stability
axis roll and yaw rates respectively. Obviously, these

auxx  variables do not form a complete set of possible
controlled outputs, but are used here as an example.

In vectors aex  and auxx , velocities have units of

ft/s and angular variables have units of degrees.  The
partial differential xxaux ∂∂ /  is defined below in matrix

form for the elements shown in equations (15) and (19)
as
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and the solution to the first derivative is illustrated as

π∂
∂α 180

22 wu

w

u +
−= (21)

where the units are deg/ft/sec.  Equation (20) is used to
solve equation (18) for xh .  Figure 4 illustrates how the

variables described fit into the NDI closed-loop
structure.

Extraction of Force and Moment Data from
Simulation

Aerodynamic Variables

In the typical airplane simulation, force and
moment aerodynamic data are defined in tables that are

generated from wind tunnel and flight data.  These
tables, which require interpolation, usually contain non-
dimensional coefficients (ci ) that are nonlinear

functions of many airplane variables, for example
α ,β , Mach, altitude, and δ .  The aerodynamic forces
and moments that affect aircraft stability (no control
contributions) are then calculated as

( )
( )
( ) SbqccN

cSqccM

SbqccL

SqccZ

SqccY

SqccX

nna

mma

lla

zza

yya

xxa

δ

δ

δ

δ

δ

δ

−=
−=

−=
−=

−=
−=

)(

)(

)(

 (22)

where q  is dynamic pressure (lb/ft2), S  is the wing
reference area (ft2), b  is the wing span (ft), and c  is the
mean aerodynamic chord (ft). Aerodynamic forces

aaa ZYX ,,  have units of lb and the aerodynamic
moments La,Ma,Na  have units of ft-lb.  The
coefficients (cx ,cy ,cz ) represent the total non-

dimensional aerodynamic force along each axis and
coefficients ( nml ccc ,, ) represent the total non-

dimensional aerodynamic moment about the
corresponding axis. The δc  terms are the non-

dimensional aerodynamic force and moment
coefficients due to controls.  Note that the total non-
dimensional coefficients include the δc  terms, so these

control contributions are just being subtracted out.  In
this paper, the δc  terms also include interference

coefficients for the appropriate control effectors.  In a
later section, it will be shown how the δc  coefficients

are used to create the feed-forward portion of the
control.

Force & Moment DI

Simulation
-

+
Desired

Dynamics

Trim Inputs

Open-loop
Command

Models

Reference
Signals

aero coefficients
engine forces &  moments

output variables
physical properties

etc.

cy desy�
1)]([ −xghx

δcmd )(xh
y

Calculations
For
aex�

aex�

xh

fby�

CV Definition



AIAA-99-4001

American Institute of Aeronautics and Astronautics
6

Thrust Variables

Thrust vectoring is applied to both the pitch and
yaw axes. Here, the control components ,,,( ttt ZYX δδδ

),, ttt NML δδδ  resulting from the yaw nozzle deflection
δty  and pitch nozzle deflection δtp  are calculated as

( )

txt

tztxt

tzt

tpgt

tytpgt

tytpgt

YlN

XlZlM

YlL

TZ

TY

TX

δδ

δδδ

δδ

δ

δ

δ

δ

δδ

δδ

−=
+=

−=

−=

=

−=

)sin(

)sin()cos(

1)cos()cos(

 (23)

where lx   is the distance (ft) of the nozzle force behind
the cg, lz  is the distance (ft) below the waterline, and

Tg  represents gross thrust (lb).  These functional

equations will be used to develop an approximate
inverse controls map.

Combined Forces and Moments

The combined aerodynamic and engine forces and
moments in equations (14) are calculated by using
results from equations (22) and (23) as

tta

tta

tta

tta

tta

tta

NNNNN

MMMMM

LLLLL

ZZZZZ

YYYYY

XXXXX

δδ

δδ

δδ
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δδ

−+=−
−+=−

−+=−
−+=−

−+=−
−+=−

 (24)

where ( )tttttt NMLZYX ,,,,,  represent the total thrust

forces and moments, and the other variables have been
previously defined.

Inverse Control Map

Previous sections involved constructing suitable
expressions for desy�  and )(xfhx . In this section,

equation (12) is solved using an approximation of 1g

that is linear with respect to the present control, or
δBgg ≅1 .  Standard linear inverse operations

(standard inverse or minimum norm solution), where
gB replaces g( x) of figure 3, define the feed-forward
path of the proposed NDI control.

From the equations of motion, the accelerations
due to all controls define ),(1 δxg , or

mXu δδ =�

mZw δδ =�

)180)(( πδδ yyIMq =� (25)

mYv δδ =�

INILIp xzzz )180)(( πδδδ +=�

INILIr xxxz )180)(( πδδδ +=�

where 2
xzzzxx IIII −= .  The aerodynamic controls aδ

and thrust vectoring controls tvδ  independently

generate forces and moments, so for example

ta XXX δδδ += (26)

where aXδ  denotes the force in x-direction due to total
aerodynamic control.  As a result, ),(1 δxg  expands as

),(),(),(1 tvtvaa xgxgxg δδδ += . (27)

Further expansion, however, is limited due to controls
in aδ  and tvδ  whose effectiveness is determined by the
position of other controls.  This control dependency is
dealt with in the next two subsections as linear control
approximations are sought separately for ag  and tvg .

Aerodynamic Controls Map Approximation

From equations (25) and (26) and the form of (22),
linear control approximations are actually sought for
the total control  force and moment coefficients to
generate a Bag ,  so aBaa gg δ,≅ .  Let mcδ  serves as an

example.
 In the aerodynamic database, the total pitch

moment control coefficient expands as

∑+

∑∑ +=

≠

≠+==

ji
jiijm

al

jili
jiim

l

i
iimam

xc

xcxcxc

 ),,(

),,(),(),(

int,,

 ,11
,

1

1
,

δδ

δδδδ

δ

δδδ
(28)

where 
��
δa = (δ1,�,δ la)T .   The first two sets of

coefficients on the right side of the equation vanish
only when the primary control δi  is zero.  The third set,
the interference coefficients, vanish whenever δi = 0 or
δ j = 0 .  Similar expressions with the same number of

coefficients and their respective dependent variable sets
exist for the other total control force and moment
coefficients.

Let 0
iδ  denote the previous value of iδ  and

assume, for the moment, that an intermediate call has
been made to the aerodynamic database to retrieve
coefficients evaluated at the current state x  and the

previous control, e.g. ),,( 00
, jiim xc δδδ .  For the non-

interference coefficients, a simple linear control
approximation imc ,

~
δ  results from dividing the

intermediate coefficient by its previous primary control,
i.e.,

iiiimiim xcxc δδδδ δδ )/),((),(~ 00
,, = (29)

iijiimjiim xcxc δδδδδδ δδ )/),,((),,(~ 000
,, = . (30)
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This 'global slope' approximation is viable here
because: 1)the integration time step t∆  is generally
small, and 2)each effector is rate limited, max,|| ii δδ �� ≤ .

The combination implies that the neighborhood about
(δ i

0,δ j
0,�) where (29) and (30) must hold is small

being limited by the effector's maximum travel, i.e.

max,max, ii t δ�⋅∆=∆ , from its previous value.

Figure 5 illustrates the approximation for

),,(, jiim xc δδδ  over the neighborhood of possible travel

of iδ  and jδ .  The shaded area corresponds to imc ,δ
evaluated at all points in the neighborhood.  The dashed
line is the approximation expressed in equation (30).
Here, linear interpolation is assumed and the
neighborhood does not cross any tabular breakpoints of

iδ  and jδ .  Under these assumptions, the slope of

imc ,δ  is constant along paths of constant δi  and

constant jδ .  For any iδ  where max,
0 || iii ∆≤−δδ , it

can be shown that the approximation error is bounded
as

|~| ,, imim cc δδ − ≤ max,max, |||| jjiiiG SSS ∆⋅+∆⋅− (31)

where iimiG cS δδ ,= , iimi cS ∂δ∂ δ ,=   for 0
ii δδ =

and 0
jj δδ = , and jS  is the steepest jimc ∂δ∂ δ ,  for

0
jj δδ =  at the extreme travel of δi , i.e. max,

0
ii ∆±δ .

Note the first term on the right of (31) corresponds to
the difference between the global slope and the local
slope along iδ .  Both terms on the right are weighted

by the maximum excursion of the respective control.
Expression (31) can also be applied to the other

coefficients in (28).  For ),(, iim xc δδ , the second term
vanishes. For the interference terms ijmc ,int,δ , the
coefficient vanishes when either control equals zero.
Either control could be assumed to be primary, so

jjijmiiijmijm ccc δδδδ δδδ )(or  )(~ 00
int,,

00
int,,int,, =    (32)

where ),,( 00
int,,

0
int,, jiijmijm xcc δδδδ = .  Ideally, it would

be the one leading to the smallest error bound in (31).
The linear control approximation of cδm,i  is then
obtained by substituting the coefficients of equations
(29), (30), and (32) into equation (28).  Analogous
expressions can be developed to approximate the other
total force and moment coefficients.  Dimensionalized
and substituted into equations (25) and (26), these
approximate coefficients yield the desired input map

aaBaaa xgxg δδδ ),(),( 0
,≅ . (33)

Here, it is assumed that the previous primary controls
are nonzero.  When one is zero, the effectiveness due to
the last nonzero control is used.

To speed up implementation, the previous state 0x
was substituted above for the current state on right side

of equation (33).  Due to the slow-varying nature of the
state-related dependent variables (e.g. Mach, α , β )
relative to the time step ∆t = .01sec, no noticeable
differences were observed in practice.  Moreover, in the
feedback path, the aerodynamic force and moment
coefficients representing the baseline with no controls
also used previous values with no problems.  This
simplification essentially delayed the non-inertial
portion of the feedback signal by 10 msec.  Using the
previous coefficients in constructing the feedback path
and the approximate linear control map for the feed-
forward portion, a very efficient procedure was realized
in implementing this NDI tool.  The efficiency realized,
moreover, could not be obtained using functional fits,
incremental implementations requiring tables of partial
derivatives, or additional calls to the aerodynamic data
base to get the present force and moment information.

Figure 5. Linear control approximation of imc ,δ .

Thrust Vectoring Controls Map Approximation

As before, linear control approximations are sought
for the thrust vectoring control forces and moments.
Unlike the aerodynamic control coefficients, the control
force and moments due to thrust vectoring have
functional descriptions (eq. (23)).

The procedure used here involves local slopes
based on the previous control.  The linear control
approximation of tXδ , for example, has the form

tp
tptytp

t
ty

tptyty

t
t

XX
X δ

∂δ
∂δ

∂δ
∂

δδ
δ

δδ
δ

δ 0,00,0 ||
~ += . (34)

To be noted, this form is not motivated by a Taylor
series expansion of tXδ  about zero thrust vectoring
controls.  For a limited deflection range ( °≤ 15 ),
analysis showed it to be as good as the Taylor series
expansion.  Moreover, in practice it proved better than a
'global slope' approach patterned after that used in the
previous section.

Analogous expressions to (34) for the other thrust
vectoring forces and moments, substituted into
equations (25) and (26), yield the desired linear control

0 0
iδ

0
jδ

iδ

max,
0

jj ∆−δ

max,
0

jj ∆+δ

1
iδ 2

iδ

max,2 i∆⋅

imC ,δ

imC ,
~

δ
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approximation form for ),( tvtv xg δ .  Combined with

results of the last section, the linear control
approximation of g1(x,δ )  then is

δδδδ BtvtvBaaB gggxg =+≅ ,,1 ),( (35)

where matrices aBg , , tvBg ,  , and Bg  are evaluated at

the previous state and control.  Above, the control map
assumes that each control can have positive and
negative deflections.  Prior to establishing the inverse
control map, controls restricted to unilateral deflections
(positive or negative) are briefly considered.

Unilateral Control Map Approximation

In this paper, it is assumed there is always a left-
right pair of unilateral controls.  Here, the nominal
method used to operate this type of control is to either
use the left control or the right control, but not at the
same time.  This is accomplished by designating a
pseudo control in which a negative command moves,
for example, the right control and a positive command
moves the left control.  As an illustration, let LR,3δ
designate a unilateral right/left control pair and δ3  the
pseudo control.  Since only the right or left control will
be nonzero, the pair’s contribution to the total pitch
moment control can be approximated as( )

30
3

0
3

0
3

0
3,

0
3

0
3,

3,3,
),(),(

δ
δδ

δδ δδ
δδ

RL

RRmLLm
LmRm

xcxc
cc

−

+
≅+

(36)
Here a negative value of 3δ  corresponds to the
deflection of the right control and a positive value of 3δ
corresponds to the left control.  In the approximation of
equation (35), equation (36) implies that the columns of

aBg , , corresponding to δ3L  and R3δ , are replaced with
one corresponding to 3δ .

Pseudo Inverse Allocation

The typical airplane control system has more
control effectors than control variables, so some type of
allocation approach is required to distribute the control
commands.  In this paper, a weighted pseudo inverse
approach is used. With fewer equations than unknowns
in equation (12) given (35), minimize δδ 1−WT  in the
solution to yield the inverse control map

[ ] zghWghghW T
BxBx

T
Bx

1
)()(

−
=δ (37)

where )(xfhyz xdes−= � .  The weighting matrix, W ,

along with the control variables are the only variables
that the designer must adjust in the entire control
process.  Here, for example, the diagonal elements of
W  consist of the rate limits max,iδ� .  As a result, the

controls with the higher rate limits will be utilized more
in the dynamic inversion control.

For unilateral controls, the resulting psuedo control
must be correctly translated into left and right control
commands.  The left side is chosen when the pseudo
control command is positive and the right side is chosen
when the pseudo control command is negative.

Adjustment for Control Effector Failures

The tool has potential application in determining
achievable dynamics in the face of control effector
failures.  This requires changes both to the feedback
and feed-forward portions of the dynamic inversion
control.

Control effector failures can occur in several forms
such as stuck position, missing or partially missing
surfaces, and floating surfaces.  When a control failure
occurs, forces and moments generated by that control
must be included with the corresponding NDI feedback
signals when the effector is no longer used for control.

For example, suppose the thi  primary control (first
term in eq. (28)) fails and that this control also has
interference aerodynamics (third term in eq. (28)).  All
force and moment non-dimensional aerodynamic
coefficients shown in eq. (22) will be modified, but for
simplicity only the pitching moment equation will be
illustrated as

cSqccccM ijmimmma )( ,int,, δδδ ++−= (38)

showing how the failed control moment increments are
taken into account.

The following changes are required in the feed-
forward NDI path. When a bilateral control fails, Wi  is

set to zero, thus eliminating the i
th  control command.

Options for a unilateral control are to either eliminate
the opposite side (left or right side) after a failure by
setting Wi = 0, or to use the opposite side to counteract
forces and moments generated by the failed control if
that control has a non-zero deflection.  The latter option
has been selected for a stuck actuator and the former
option for a missing surface.

Power Required

One feature of this achievable-dynamics approach
is the ability to measure the control power required
when flying complex trajectories.  The method used in
this paper is to multiply the gB control effectiveness
matrix by the reconstructed control command vector.
The reason to reconstruct the control command vector
is because actuator rate and position limits are used at
the output of the pseudo inverse allocation.  When these
limits are reached, the control commands are modified
accordingly.  Mass and inertia terms are taken into
account to calculate forces in units of pounds and
moments in units of foot-pounds.
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Non-Minimum Phase Analysis

Stability of the force and moment DI control is
considered at various trim conditions in the flight
envelope.  To perform this analysis, recall dynamic
inversion was basically implemented using an
approximation of the nonlinear system, or

m

ln
B

Ryxhy

RRxxgxfx

∈=

∈∈+=

                          )(

 ,        ),()( 0 δδδ�
(39)

where 0δ  refers to the previous control. Here, the
previous state in the control map has been replaced with

the current one.  Let the previous state/control { }00,δx

represent a trim condition of (39), i.e.
0000 ),()(0 δδxgxf B+= (40)

The corresponding linear system is

xHy

BxAx

x∆=∆
∆+∆=∆ δ�

(41)

Under the construction of gB, the trim condition is the
same as the trim for the actual system. Moreover, this
linear system is the same as the actual system with the
exception of the linear control input map B.

For an equal number of controls and control
variables, i.e.l = m, the inner loop of the dynamic
inversion control produces m  closed-loop poles at
s = 0   and n − m closed-loop poles at the transmission
zeros of the open-loop system 9.  These n − m closed-
loop poles are furthermore unobservable to the outer-
loop control.  To promote internal stability, it is
important that there are no right half plane transmission
zeros.  When l > m, the transmission zeros of an
equivalent system can be used to determine internal
stability.

The closed inner-loop can be described as

xHy

xAHyz

zHBWBHHBWBxAx

x

xdes

T
x

T
x

T
x

T

∆=∆
∆−∆=∆

∆+∆=∆ −

�

�
1)(

(42)

It can be shown that this same closed-loop system can
be realized with dynamic inversion using the following
m × m square system

xHy

RHBWBxAx

x

m
psuedopsuedo

T
x

T

∆=∆

∈+∆=∆ δδ          �
(43)

where δpsuedo= ( HxBWBTHx
T )−1∆z . As a result, the

closed-loop system of (42) will have m  poles at s = 0
and n − m poles at the transmission zeros of the system
in (43).  It is clear from (43) that both the choice of
control variables (i.e. xH ) and the weighting W

influence the transmission zeros of (43) and therefore
the closed-loop poles of (42).  Either may have to be
changed to preserve closed-loop stability.

Examples

Eleven control effectors are used in the following
examples, but four of the controls are unilateral leaving
9 effective controls.  These effective controls are left
elevon, right elevon, symmetric pitch flap, all-moving
tip (AMT), spoiler-slot-deflector (SSD), left outboard
leading edge flap, right outboard leading edge flap,
pitch vectoring, and yaw vectoring.  The two one-
direction controls are the AMT and the SSD, both of
which have left-side and right-side controls.

Yaw-Roll-Pitch Maneuver

The three control variables are defined in the
vector

[ ]ssb rpqy 2.0,, −= β (44)

where the longitudinal variable is pitch rate, the lateral
variable is stability axis roll rate, and the directional
variable is a linear combination of sideslip and stability
axis yaw rate.  The latter case illustrates that any linear
combination of states can be used.  With this
combination of control variables and definitions in eq.
(19), the matrix H (eq. 4) becomes

















−
=

2.00100

01000

00010

H (45)

which is used with equation (20) to define the hx

matrix (eq. (18)).  Values for parameters that define the
desired dynamics (eq. (5) - (7)) are listed in table 1.

In the lateral channel, a second outer loop was
wrapped around the first outer loop for ps  to control
bank angleφ .  A simple first order response expressed
by

( )φδωφ φ −≈ cphic ,
� (46)

( )( ) αθφφφδ costancossin bbclat rq +−= � (47)
 where bandwidthω phi  was used with a value shown in

table 1. δlat  represents the stability-axis roll rate
command and is given in eq. (6) for the first outer loop.

Table1.  Command Model Parameters
Parameter Value Parameter Value

ς lon 0.7 ωlat 2
ωlon 5 ςdir 0.7

ωn,lon 3 ωdir 3
Klon 1/3 ω phi 0.75

In the example problem, the airplane was trimmed
straight and level at 25000 feet and Mach 0.7.  A
directional channel doublet of amplitude 5 degrees was
commanded during the first 5 seconds.  At 7.5 seconds
into the simulation, a 50 degrees bank angle step was
commanded, and between 11 and 16 seconds a
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5 deg/sec pitch doublet was commanded.  In addition,
at 0.05 second into the simulation, the throttle was
increased by 60 degrees above the trim value.  This
large increase in throttle along with the downward
direction of the velocity vector caused Mach number to
increase from 0.7 to 0.9 over the 20-second simulation.
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Figure 6. Yaw-roll-pitch maneuver.

Three variables are shown in the four plots in
figure 6.  The short-dashed lines represent input
commands yc , the solid lines represent reference
signals from the open-loop command models, and the
long-dashed lines represent the control variables. The
top plot is for the longitudinal doublet command.   The
qb  response almost perfectly duplicates the reference
response.  The second plot is for the φ  response and the
generated error is the command for the ps  response that

is shown in the third plot.  Finally, the directional
doublet command and response is shown in the fourth
plot.  In both the third and fourth plots, the response is a
very close replica of the reference response.  Note that
there isn't any reference response for the bank angle
response.

High Angle-of-Attack (Alpha) Response

 The next example illustrates how a command-
model variable can be changed to investigate the
achievable dynamics, using a high angle-of-attack (α )
maneuver which is illustrated in figure 7.  The trim
condition is straight and level at 25000 feet and Mach
0.4.  The longitudinal control variable is changed to the
linear combination α + 0.2qb 5.  In this example yc  is

ramped in one second from a trim at α ≈ 12$  to
maximum where trim α ≈ 42$ . That value is held until
5 seconds into the simulation and then  is ramped back
to the initial trim 7 seconds into the simulation where
yc  remains constant until the end.  The throttle was also
increased at 0.04 second by 60 degrees above the trim
value.
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Figure 7.  High angle-of-attack maneuver.

For the first command model where ς lon = 1.0, the

short-dashed line represents an unstable response with
all other command dynamics remaining the same as
shown in table 1.  All the longitudinal controls become
position and rate saturated, and clearly the desired
dynamics cannot be achieved. For the second command
model with ς lon = 1.5, the solid and long-dashed lines

represent the reference signal and closed-loop response,
respectively.  Perfect tracking is achieved for most of
the simulation, except when yc  suddenly changes
slope.  At those times, the left and right elevons and the
pitch thrust vectoring effectors temporarily position
saturate, but the symmetric pitch flap remains within
the allowable region.  Rate saturation also occurs
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temporarily in all the longitudinal controls.  During this
simulation run, Mach decreased to approximately 0.18.
Between the two examples, a wide range of dynamic
pressure and angle-of-attack variation has been
demonstrated.

Although not shown, various failure cases were
simulated for all of the different configurations to
evaluate the approach described earlier in this paper.
Excellent performance was achieved when the desired
dynamics remained within the achievable range.

Concluding Remarks

A generic nonlinear aircraft simulation is used to
evaluate an aircraft's achievable dynamics and control
power requirements during maneuvers. Nonlinear
dynamic inversion provides the theoretical
underpinnings of the approach forcing designated
control variables to track command-model signals.
Under the assumption of internal stability, perfect
tracking is theoretically possible when i) all necessary
variables including forces and moments can be
continually extracted from the simulation, ii) all
controls are linearly related to their generated forces
and moments, and iii) controls do not exceed their
position and rate limits.  In this paper, (i) was satisfied
and (ii) was not satisfied whereas excessive violations
of (iii) characterized dynamics outside the achievable
set.  In spite of the difficulties with (ii), near perfect
tracking was obtained with the introduction of a linear
control map approximation.  This approximation
roughly satisfied (ii) over each integration time step.  Its
construction, using only existing simulation data,
greatly enhanced the overall efficiency of the approach.

Other complications dealt with include features and
applications common to current aircraft and simulation
usage.  These include effectors that operate only with
positive (or negative) deflections, table look-up vs.
functional formulations of control forces and moments,
effector failure accommodation, and the blending of
multiple effectors when the number is greater than the
number of control variables.  Furthermore, internal
stability, a fundamental assumption of dynamic
inversion theory, is shown here to be a function of
control variable definition and control allocation.

Two examples are used to demonstrate excellent
tracking in all three axes over a wide range of dynamic
pressure and angle-of-attack when sufficient power is
available.  The high angle-of-attack example illustrates
how the choice of command model influences the
control power required and determines the achievable
dynamics.
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